skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Damavandi, O. K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Disordered spring networks can exhibit rigidity transitions, due to either the removal of material in over-constrained networks or the application of strain in under-constrained ones. While an effective medium theory (EMT) exists for the former, there is none for the latter. We, therefore, formulate an EMT for random regular, under-constrained spring networks with purely geometrical disorder to predict their stiffness via the distribution of tensions. We find a linear dependence of stiffness on strain in the rigid phase and a nontrivial dependence on both the mean and standard deviation of the tension distribution. While EMT does not yield highly accurate predictions of shear modulus due to spatial heterogeneities, it requires only the distribution of tensions for an intact system, therefore making it an ideal starting point for experimentalists quantifying the mechanics of such networks. 
    more » « less